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Two-dimensional convection in a Boussinesq ffuid in the presence of an imposed 
magnetic field is described in terms of a simplified model, which is exact to second 
order in the amplitude of the motion and appears to be qualitatively correct for larger 
amplitudes. If the ratio of the magnetic diffusivity to the thermal diffusivity is SUE- 
ciently small and the imposed magnetic field is sufficiently large, convection sets in 
when r = r ( O )  as overstable oscillations, which grow in amplitude as the normalized 
Rayleigh number r is increased. There is also a branch of steady solutions that 
bifurcates from the static equilibrium a t  r = r"' > do) and stable steady solutions 
exist for r > rmin. For certain choices of parameters subcritical steady convection, 
with rmin < de), is found and the oscillatory branch ends on the unstable portion of the 
steady branch, where the period of the oscillations becomes infinite. In  some circum- 
stances there may be a bifurcation from symmetrical t o  asymmetrical oscillations, 
followed by a sequence of bifurcations a t  each of which the period doubles. Other 
choices of parameters allow only supercritical convection with r increasing mono- 
tonically on the steady branch; if convection first appears as overstable oscillations 
the steady branch is then unstable for rce) < r < rmin and there is a Hopf bifurcation 
at  r = rmin. This complicated pattern of behaviour is consistent with the results of 
numerical experiments on the full two-dimensional problem. 

1. Introduction 
At the surface of a star like the Sun energy is carried outwards by convection. In 

sunspots, where there are strong local magnetic fields, normal convection is suppressed 
and only oscillatory motion can occur. It is important, though by no means straight- 
forward, to establish what field strength is needed to inhibit normal convection. This 
situation can be modelled by considering a horizontal layer containing a Boussinesq 
fluid whose electrical conductivity is large. Suppose that the layer is permeated by a 
uniform magnetic field: then the field can support hydromagnetic oscillations, which 
decay through viscous and ohmic dissipation. These oscillations may, however, be 
maintained if the layer is heated from below. As the rate of heating is increased, the 
oscillations grow in amplitude until they eventually give way to steady convection. 
Such behaviour is typical of systems where stabilizing and destabilizing effects 
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compete (Spiegel 1972). The aim of this paper is to relate nonlinear solutions to linear 
theory and to explain the transition from oscillatory to steady motion in the nonlinear 
regime. 

Although it  is possible to solve the relevant partial differential equations numeric- 
ally in certain idealized geometries, this transition cannot be explored with adequate 
precision. We therefore construct a set of coupled, nonlinear ordinary differential 
equations with solutions that reproduce the essential features of solutions to the full 
system. This simplified model is far easier to solve: steady solutions can be written 
down a t  once and their stability can be investigated analytically, while time-dependent 
solutions are readily computed. Thus we are able to isolate the various paths by which 
periodic and steady solutions merge, and to relate linear to  nonlinear results. 

The development of two-dimensional convection in a magnetic field has been 
investigated in a series of numerical experiments (Weiss 1981 a,  b )  and similar results 
have been obtained for axisymmetric cells (Galloway & Moore 1979). I n  the regime 
of interest the static, conducting solution becomes unstable when the normalized 
Rayleigh number r (defined in equation (2.16) below) exceeds a critical value do). A 
branch of oscillatory solutions bifurcates from this point (cf. figure 1) and terminates 
shortly after the appearance of steady, finite-amplitude convection a t  r = Tmin. Non- 
oscillatory solutions bifurcate from the conducting state when r = r@) but rmin may 
be less than r@), as in figure 1 (a ) .  Subcritical steady convection, with r c de), is an 
important feature of this problem and is easily explained. Once Convection starts, 
magnetic flux is concentrated a t  the edges of the cell (Weiss 1966), thereby facilitating 
motion in the field-free central region. Flux expulsion therefore allows steady sub- 
critical convection : conversely, any satisfactory model of convection in a magnetic 
field must allow for the formation of lateral sheets of flux in two dimensions, or isolated 
tubes in three. With different choices of parameters, rmin may be greater than r(e), as 
in figure 1 ( c ) .  It is tempting to postulate, in both cases, an unstable continuation of 
the steady branch from rmin to de), to  which the oscillatory branch is somehow linked, 
but such conjectures cannot be confirmed from numerical solutions to  the full problem. 

To construct a simplified model of two-dimensional magnetoconvection we expand 
the dependent variables as truncated Fourier series in space and then adopt the 
minimal representation such that (i) linear results are identical with those for the full 
problem, (ii) the velocity remains finite for all finite values of r and (iii) some effects of 
flux expulsion are included. This is achieved with a fifth-order system of ordinary 
differential equations which possesses both periodic and steady solutions and allows 
subcritical convection. Moreover, the representation is just that which reproduces 
results obtained by modified perturbation theory, to  second order, for the full problem. 
This procedure is similar to that followed by Veronis (1965, 1966) in studying the 
effects of solutes and rotation on convection. The model equations for thermosolutal 
convection have been studied in some detail (Siegmann & Rubenfeld 1975; Rnbeufeld 
& Siegmann 1977; Da Costa, Knobloch & Weiss 1981) and yield results that are 
similar to those presented here. The limibations of this procedure are discussed by 
Da Costa et al. (1981). 

In  9 2 we derive the fifth-order system. Then we summarize the stability properties 
of the static solution and results for small-amplitude convection. Next, we present 
some results for the full two-dimensional problem and then obtain nonlinear steady 
solutions for the model problem and investigate their Stability. Time-dependent 
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solutions, computed numerically, are described in $56-8. Although the model is a 
rigorously valid approximation to the full problem only when the velocity is very 
small, the solutions do reproduce the relevant properties of two-dimensional convec- 
tion. They also exhibit an extraordinary variety of behaviour: in particular, we show 
explicitly how oscillatory solutions either bifurcate from the steady solution or else 
approach it as their period grows infinite. I n  conclusion, we summarize the results and 
use them to explain features of the two-dimensional problem. Although our discussion 
focuses on magnetoconvection, much of i t  holds also for other double-diffusive 
systems (Spiegel 1972) and most notably for thermohaline convection. In  this paper 
we confine ourselves to explaining the behaviour of a complicated fluid system ; certain 
more mathematical points are taken up in a parallel study of the thermosolutal 
problem (Da Costa et al. 1981). 

2. Derivation of the model 

of a magnetic field (Chandrasekhar 1961; Weiss 1977) are: 
The equations describing thermal convection in a conducting fluid in the presence 

1 P 1 -+ (u.V)u = -- Vp-- ge,+- ( V A  B)A B + v02u, 
at Po Po POP0 

aT/at = - V .  (Tu) + KWT, ( 2 . 2 )  

aB/i%=VA(uAB)+vV2B, V.B=O, (2.3) 

where in the Boussinesq approximation V . u = 0 and p/po = 1 - a(T - To). Here u is 
the velocity, T the temperature and B the magnetic field; the density p is equal to po 
a t  the reference temperature To; and the constants v, K, 7, ,uo and a are respectively 
the viscous, thermal and magnetic diffusivities, the magnetic permeability and the 
coefficient of thermal expansion. We have taken gravity to act downwards with the 
constant acceleration g, e, being a unit vector in the vertical z direction, and we con- 
sider a layer of fluid confined between fixed horizontal planes a t  z = 0 ,  h. A fixed 
temperature difference AT is maintained across the layer and, in the absenGe of any 
motion, there is a uniform, externally imposed magnetic field B, = B,e,. 

In  what follows we shall restrict our attention to  two-dimensional convection such 
that the motion and the magnetic field lie in the (x, 2)-plane only, with all the depen- 
dent variables independent of the third co-ordinate y. As usual we shall write equations 
(2.1)-(2.3) in a non-dimensional form by scaling them relative to the thermal con- 
duction time. Thus we scale t by h 2 / K ,  u by K / h ,  x and 2 by the separation h, T by AT 
and B by B,. Hereafter the symbols t ,  u, x, z ,  T and B will refer to the corresponding 
dimensionless quantities. For the present configuration it is convenient to eliminate 
the pressure p from the equation of motion by taking the curl of (2.1) and to express 
the result in terms of the stream function $ ( x , z , t )  and the flux function A ( x , z , t )  
defined by 

u = (ZL, 0, w) = Br(B, ,O,B, )=  

Since the magnetic field is concentrated by the motion into vertical sheets, it is con- 
venient to separate A into a vertically averaged flux function A ( x ,  t )  and a fluctuating 

6 FLAl I I 3  
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component A’(x, z ,  t )  = A -A. The temperature T ( x ,  z, t )  is similarly separated into 
a horizontally averaged temperature T(z,  t )  and a fluctuating temperature component 
T‘(x ,  z ,  t )  = T - T. We then obtain the dimensionless equat’ions 

(2 .5b)  

( 2 . 5 ~ )  

( 2 . 5 d )  

( 2 . 5 e )  

where the angled brackets in (2.5b, c )  and (2 .5d ,  e )  denote horizontal and vertical 
averages respectively, and the dimensionless parameters IT, 5, R and Q are defined by 

These quantities are respectively the two Prandtl numbers, the Rayleigh number and 
the Chandrasekhar number. 

We shall be interested in understanding the nonlinear properties of magneto- 
convection in a cell of width A. For convenience we adopt the illustrative stress-free 
boundary conditions that yield sines and cosines as the eigenfunctions of the linear 
problem (Chandrasekhar 1961). Thus for the velocity field 

for the temperature field 
- - 
T = l  on z = O ,  Y ’ = O  on z = 1 ,  

T’= 0 on Z =  0, z =  1, aT’/ax= 0 on x =  0, x =  A, (2.8) 

and for the magnetic field 
- - 
A = O  on x = O ,  A = h  on x = h ,  

A’ = 0 on x = 0,  x = A, aA‘/az = 0 on z = 0, z = 1. (2.9) 

These boundary conditions allow the concentration of the field into flux sheets a t  the 
sides of the cell without requiring magnetic boundary layers a t  the top and bottom. 
Equations (2.5)-(2.9) define the problem solved numerically by Weiss (1981 a, b) .  

To construct a simplified model of this basic problem we follow the procedure 
introduced by Veronis (1965).  The stream functions, the flux function and the tem- 
perature are expanded as Fourier series in x and z ,  and only the leading terms are 
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retained. The velocity field consistent with the boundary conditions (2.7) is then 
described by 

h nx 
n h  + = 2(2p)4 - sin - sin nz ~ ( 7 1 ,  (2.10) 

where 7 is the time measured in terms of the thermal decay time for the fundamental 
mode, 

7 = pt, p = n2(1+ l/h2), (2.11) 

and the constants have been inserted for later convenience. In  the presence of motion 
the horizontally averaged temperature acquires a bimodal deviation from the 
conductive temperature distribution !I! = 1 - z that corresponds to the formation of 
thermal boundary layers a t  top and bottom. Thus we set 

!P = 1 - x - n-1 sin 2nz ~ ( 7 ) .  (2.12) 

I n  order to represent the concentration of the initially uniform magnetic field into 
flux sheets at both sides of the cell we let 

- h 2nx 
A = x+-sin-e(~).  n h  (2.13) 

Finally, the thermal and magnetic fluctuations are each described by a single mode, 
corresponding to the eigenfunctions of the linearized problem, so that 

77X 
T‘ = 2(2/p)4cos-sinnz b ( 7 )  (2.14) h 

and 
7lX 

A’ = 2(2/p)4 h sin - cos nx d(7 ) .  h (2.15) 

Equations (2.10)-(2.15) describe the main physical features of the system that we 
wish to model. 

The differential equations are derived by substituting these expressions into (2.5) 
and consistently neglecting all terms generated that involve higher harmonics. For 
example, in ( 2 . 5 ~ )  we neglect t,he term proportional to sin (3ns/h)sinnz that is 
generated from the product sin (nx/h) cos (2nxlh) sin nx. With the definitions 

(2.16) 

so that 0 < m < 4, we obtain 

6 = a[ - a  + rb + <qd{(m - 3) e - I}], (2.17 a )  

where the dot denotes differentiation with respect to 7 .  Similarly, from (2 .5b-e) ,  we 
obtain the equations 

(2.1 7 b )  6 = - b + a ( l - c ) ,  

c =m(-c+ab) ,  

ri = -<d+a( l  -e l ,  

1 = -(4-n)<e+wad. 

( 2 . 1 7 ~ )  

(2.17 d )  

(2.1 7 e) 
6-2 
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The truncation leading to the above equations is consistent in that no other low- 
order harmonics are generated by the substitutions (2.10)-(2.15). It may also be 
observed that this truncation automatically conserves the uniform field component 
even if the boundary condition (2.9) is not explicitly applied. 

Equations (2 .17)  are the basic set that will be studied in this paper. These equations 
possess two significant properties. First, the divergence of the flow in phase space, 

aci a6 ac ad ad + + + + = - [a + ( 1 +a) + c( 5 -m)], (2.18) 

is always negative and so the solutions are attracted to a set of measure zero in the 
phase space: this may be a fixed point, a limit cycle or a strange attractor. Second, the 
equations have an important symmetry, for they are unchanged if the signs of a,  b 
and d are reversed while c and e are left unchanged. They resemble the equations 
derived by Veronis (1965, 1966) for other double-diffusive systems but there is one 
crucial difference, for the nonlinear Lorentz force now appears in the equation of 
motion (2 .17a) .  When q = 0,  equations (2.17a-c) can be transformed to the system 
that was studied by Lorenz (1963) .  Above we have attempted to justify their deriva- 
tion on physical grounds, without restriction on the amplitude of the convective 
motions. More generally, the Fourier expansion in x and z leads to an infinite set of 
coupled nonlinear ordinary differential equations. The truncation (2.101-1 2.15) does 
in fact include just those Fourier components that appear when a is small but the 
truncated system (2 .17)  can be rigorously justified as an approximation to (2.5) only 

(2.19) for 
max (a,  u / v ,  a / c )  < 1. 

The physical arguments presented above do, however, suggest that  the qualitative 
validity of (2.17) extends to far larger amplitude. This will indeed be demonstrated 
below by direct comparison of solutions to the two systems. Consequently the model 
equations merit detailed investigation in an attempt to understand the qualitative 
properties of the various possible solutions to the full nonlinear equations. 

3. Bifurcations from the static solution 
The variables a,  b and d ,  defined in (2.10), (2.14) and (2.15), are just the coefficients 

of the modes that appear as eigenfunctions of the linear stability problem that can be 
derived from (2 .5) ,  (2 .7) ,  (2.8) and (2 .9 )  (cf. Chandrasekhar 1961).  Since the equations 
(2.17) contain all linear relations between these modes, the linear problem derived 
from the model equations must be identical to that for the full system, as required in 
9 1. Moreover, i t  can easily be shown that the only additional Fourier modes generated 
by nonlinear interactions between the modes that appear in the linear system are just 
those that are included in (2 .12)  and (2.13).  Thus the results obtained by modified 
perturbation theory will, to  second order, be identical for the full two-dimensional 
system and for the model equations (2.17). These results will be summarized in this 
sect ion. 

(a )  Linear stability theory 
Equations (2.17) admit the trivial solution a = b = c = d = e = 0 that corresponds to 
pure conduction of heat, with no fluid motion present. The linear stability properties 
of this static solution are obtained from (2.17) upon neglecting all quadratic terms 
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and seeking solutions of the form expsr. No instability arises from the decoupled 
equations for c and e ,  while the remaining three equations yield the cubic dispersion 
relation (Chandrasekhar 1961 ; Weiss 1964) 

s3 + (1 + u + 5 )  s2 + [u( 1 - r + [q) + [( 1 + u)] s + a[( 1 - r + q )  = 0. (3.1) 

In  particular, one of the eigenvalues s vanishes (corresponding to an exchange of 
stabilities) a t  

r(e) = 1 + q. ( 3 4  

Thus the normalized Rayleigh number r = 1 at  the onset of convection in the field-free 
case. The Rayleigh number at  which there is a pair of purely imaginary eigenvalues 
s = & iw,  (corresponding to the onset of overstability) is 

while the corresponding frequency of oscillations is given by 

Since 

where A = 1 + u + 5, w, is real if and only if overstability sets in prior to the exchange 
of stabilities. This requires that q be greater than 

if q < qo or if 1: > 1, overstability cannot occur. We may therefore distinguish the 
following two cases. 

(i) o$ < 0. In  this case as r is increased there is a simple bifurcation a t  r(e) and con- 
vection first sets in as a direct (or monotonically growing) mode. 

(ii) w i  > 0 (rfo) < +)). Here there is a Hopf bifurcation a t  r ( O )  and convection first 
sets in as an overstable mode. If r(l) is the lowest value of r a t  which s is purely real 
(Danielson 1961; Weiss 1964), then for r < do) (3.1) has two complex-conjugate 
eigenvalues with negative real parts while for r ( O )  < r < di )  the eigenvalues have 
positive real parts; for r ( [ )  < T < r@) there are two positive real eigenvalues, one of 
which becomes negative for r > de). The third eigenvalue of (3.1) is always negative 
and therefore uninteresting. This second case is the one of principal concern in this 
paper. 

(b)  Modijied perturbation theory 
Let us first consider the simple bifurcation at  de). In  the neighbourhood of r(e) there is 
a triplet of steady solutions, one of which is the static solution (which is always 
unstable for r > @)). The other two are finite-amplitude solutions which, owing to the 
symmetry of (2.17),  differ only in the sign of a ,  b and d .  W'e may investigate the be- 
haviour of the two branches of non-trivial steady solutions in the neighbourhood of 
de) in terms of the velocity a by setting 

r = r ( e ) + r p a 2 + ~ ( a 4 )  (3.7) 
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This result is equivalent to that for the full problem, originally obtained by Veronis 
(1959, in a footnote) and quoted by Weiss (1981 a).  

From (3.8) we see that the branch of steady solutions bifurcates towards larger r 
( rg)  > 0) for all w < 2. In  particular, for the case of interest when overstability setsin 
first and 5 < 1, r f )  is much larger when a < 2 (Lev vertically elongated cells with 
h < 1) than whena = 2 (square cells). In  the latter marginal case the branch bifurcates 
from rce) almost vertically when a2 is plotted against r .  For a > 2 (horizontally flat- 
tened cells) the branch bifurcates towards smaller r ( rk)  < 0) when < < 1. Hence the 
imposed geometry of the convection cells is very important in determining the 
behaviour of the direct modes in the neighbourhood of the simple bifurcation. 

The above results are unaffected by the presence of overstability. When w i  < 0, 
the stability of the steady branch in the neighbourhood of de) is determined solely by 
the sign of r p .  These stability properties, which are crucial for a proper understanding 
of the global stability of the steady branch, are, however, changed when overstability 
occurs first. We postpone discussing them until $4. 

Finite-amplitude oscillatory modes can be treated similarly. When w i  > 0, we may 
use modified perturbation theory to examine the behaviour of the branch of oscillatory 
solutions in the neighbourhood of the Hopf bifurcation a t  r ( O ) .  Following Veronis 
(1959), we assume that motion is periodic, with period 27~/w, and expand both the 
frequency w and the Rayleigh number r in powers of a small parameter 6 related to  
the amplitude of the oscillations: 

w = w,+sw1+s2w,+ ..., 
r = d o )  + srf') + $r!$ + . . . , 
a = sa,+a2a,+e3a,+ ..., (3.9) 

and similarly for b, c,  d and e .  A procedure for determining whether the bifurcation is 
subcriticalisoutlined in the appendix. We find that w1 = rf" = 0 and that r$') may 
be either positive or negative. It can be shown that r$') > 0 for square cells (a = 2) but 
that, for sufficiently slender or sufficiently flat cells, subcritical bifurcation is possible. 
The stability of the oscillatory branch in the neighbourhood of r ( O )  is described by the 
Hopf bifurcation theorem (Hopf 1942; Sattinger 1973; Marsden & McCracken 1976). 
According to this theorem the oscillatory solutions are stable if the Hopf bifurcation 
is supercritical (r$') > 0) and unstable if i t  is subcritical ( r t )  < 0). 

We have already noted that these finite-amplitude results are identical for the full 
system and for the model equations. Although the two systems diverge a t  third 
order, the solvability condition involves only those modes that are already present: 
hence rp), r!jO) and w2 are the same for both systems. This agreement is a straightforward 
consequence of the fact that the modes included, on physical grounds, in (2.12) and 
(2.13) are the only additional modes that appear in second order from the perturbation 
expansion. Furthermore, it is easier to obtain finite-amplitude results (especially for 
time-dependent convection) from (2.17) than from the full equations. 

This comparison suggests a systematic procedure for generating higher-order 
systems of ordinary differential equations. The modes that have to be included are 
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(C) 

/ 

FIG. 1. Results for the full two-dimensional problem with q = 2.5, u = 5 = &. Subcritical steady 
convection with h = 1: (a)  the Nusselt number N and ( b )  the scaled root-mean-square velocity 
U ,  as functions of r ;  for oscillatory solutions only the maximum values are plotted. Supercritical 
convection with A = +: (c) N ( r )  and ( d )  U ( r ) ;  for oscillatory solutions both maximum and average 
values are plotted. 

precisely those that appear as modified perturbation theory is applied to higher order. 
It is possible to construct an eleventh-order extension of (2.17) in this way. We should, 
however, bear in mind that the radius of convergence of the perturbation expansion 
is limited by (2.19) and that the addition of a few more modes will be effective only 
if some new physical process is represented. Otherwise there is no satisfactory choice 
that lies between the minimal system (2.17) and including enough modes to provide an 
accurate solution of the full equations (2.5). 

4. Properties of steady convection 
The nonlinear partial differential equations (2.5) that govern tvo-dimensional con- 

vection can be integrated numerically on a computer and Weiss (1981 a) has obtained 
families of solutions as r is increased for different choices of the parameters 5 and q. 
These result,s are inevitably incomplet,e and i t  is impossible to investigate the entire 
five-dimensional parameter space. The numerical experiments do, however, yield 
both steady and oscillatory solutions; they also reveal behaviour that is bewilderingly 
complex. 

To illustrate these problems we show the results of two series of numerical experi- 
ments. The vigour of convection can be measured in terms of either the heat flux or the 
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kinetic energy. It is convenient to introduce a normalized heat flux, given by the 
Nusselt number N = -aT/az, evaIuated at z = 0; in the absence of motion N =  1 
and, from (2.12),  N = 1 + 2c for small-amplitude convection. To facilitate comparison 
with subsequent results, we define a normalized root-mean-square velocity U such 
that 

u2 = (A2 /2n2)  ( 1  + h2)-2(u2), 

where the angled brackets denote a spatial average; for small-amplitude convection 
U = a. In  figure 1, both N and U are plotted against r ;  for some oscillatory solutions 
the maximum values and the time-averaged values are shown. The two series of 
experiments both have q = 2.5 ,  v = 6 = 0.2; hence convection sets in as overstable 
oscillations and do) E 2.57, r@) = 3.5 in each case. For the runs in figures 1 (a ,  b ) ,  
h = 1 (w = 2) while, for those in figures 1 (c, d ) ,  h = t (m = 0.8). It follows from (3.8) 
that r!f) > 0 in each case. 

Figures 1 (a,  b )  show that convection first appears a t  do) but the oscillatory solutions 
are ineffectual at transporting heat: the Nusselt number N < 1.1, while U < 0.23. 
Convective transport of heat becomes significant with the appearance of steady 
solutions, which exist for all r > r m i n  2: 2.9. For square cells, therefore, steady con- 
vection first appears, with a finite amplitude, a t  r m i n  < de). For r(") < r < r m i n  only 
oscillatory solutions exist. As r is increased, the period of the oscillations rises and for 
r > 3.3 there are no persistent oscillatory solutions. (In the run with r = 3.3, the 
solution paused briefly with N E 1.08 before making an abrupt transition to steady 
convection with N N 1-78.) 

Figures 1 (c, d )  look quite different. Steady solutions are found for r > r m i n  N 4-0. 
For r = 4-1 the numerical results showed transient oscillations about a steady state; 
this solution was used to provide initial values for a run with r = 3.9, which developed 
large-scale oscillations with a reversal of the flow after each half-cycle. When h = 4, 
therefore, oscillatory solutions persist beyond de), while stable steady solutions only 
appear a t  a value of r that is distinctly greater than r@). The branch of oscillatory 
solutions, which bifurcates from r(('), continues up to v 2: rh l ln ,  though the convective 
heat transport remains small. At r = 4.1 only steady solutions were obtained and A' 
rose rapidly as r was increased. 

It is natural to assume that the steady branch in figure 1 (c) bifurcates from r(e) and 
that the stable part, with r > r m i n ,  is preceded by unstable steady solutions in the 
range dr) < r < rmin .  Similarly, we may suppose that the steady branch in figure 1 ( a )  
is also linked to r(e) by an unstable part. Since r f )  > 0, the unstable part must have a 
positive slope at  the bifurcation and so there must be two turning points on the steady 
branch. Such conjectures cannot be confirmed without calculating the relevant, 
solutions and investigating their stability. Again, the oscillatory branches terminate 
when r is slightly greater than rnl in ,  with close to the value on the steady branch, and 
the period of the oscillations increases rapidly towards the end. Yet it is not ob\ '  TlOUS 

how the transition from oscillatory to steady motion takes place. 
In  order to resolve these problems we have to fall back on a simpler and more 

tractable system of equations. Fortunately, the behaviour of solutions to the model 
equations (2.17) closely follows that depicted in figure 1. The ordinary differential 
equations have the great advantage that steady solutions can be written down 
immediately and their stability can easily be studied. Nonlinear time-dependent 
solutions are readily computed and the transition from an oscillatory to a steady 
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branch can be followed and explained. The close similarity between solutions to the 
model equations and numerical results for the full problem provides a sufficient 
justification for studying the former in some detail. In this section we present, the 
steady solutions and classify different types of behaviour. Then we discuss the stability 
of the steady solutions, reserving mathematical details for the following sect,ion. 

Equations (2.17) admit a non-trivial steady solution defined for all amplitudes a of 
the motion. This solution is given by 

where a satisfies the equation 

and the parameter p is given by 
p = (4 -a) p/w. (4.4) 

Thus steady motion is possible only for r 2 1 and for large Rayleigh numbers (4.3) 
tends asymptotically to r = 1 +p(4  -w) q + a2, so that we have, approximately, 

a = + r t ,  b = d = O ,  c = e = l .  (4.5) 

Since c,  e never exceed unity i t  follows from (2.11) and (2.12) that F and 2 satisfy the 
realizability conditions 0 < F ( z )  < 1, 0 < A ( x )  Q A.  However, the vertically averaged 
magnetic field dB/dx  reverses a t  the centre of the cell when e > 4 (a2 > p ) ;  such a 
reversal, like the corresponding temperature inversion, is characteristic of two- 
dimensional convection. 

The steady solutions are independent of the Prandtl number cr. Suppose that 
5 < 1, q > c/( 1 - 5 ) :  then, from (3.6), overstability is precluded if cr is sufficiently small 
but if cr is increased overstability eventually occurs. The steady solutions are un- 
affected by this process but their stability properties are profoundly altered. Conse- 
quently there is a multitude of cases that have to be considered. In  order to simplify 
the enumeration of different types of behaviour the discussion in this section is largely 
descriptive and a more formal treatment is deferred to $5. 

First of all, we may classify the different types of steady-solution branches. From 
(4.3) the solution r = r(a2) is a single-valued function. Thus a = 0 only when r = de) 
and the two steady-solution branches bifurcate from the static solution at  r(e), as 
postulated above. The bifurcation may be towards larger or smaller values of r ,  
depending on the sign of rg). The behaviour of the steady branches for larger amplitudes 
can be understood by noting that (4.3) may also be written as a cubic equation for 
a2 = a2(r). Hence three possible types of steady solution branches can arise, charac- 
terized by having one, two or no turning points. These three types are sketched in 
figures 2(a, b and c )  respectively: note that a2 is shown, so that the two solution 
branches corresponding to 5 a coincide. In  type (a )  the bifurcation a t  de) is towards 
smaller r ,  until a turning point is reached, beyond which r increases with increasing 
a2; in (b )  the bifurcation at de) is towards larger r ,  until a first turning point is reached 
a t  r > d e ) ,  beyond which r decreases with increasing a2 to a second turning point, 
before finally increasing again (cf. Proctor & Galloway 1979); in ( c )  the bifurcation is 
towards larger r and r increases monotonicall1 with a2. Steady solutions of type ( a )  
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FIGURE 2. Sketches showiny the six standard types of solution for the model problem. The first 
three show a2 as a function of r when there are no oscillatory solutions and the branch of steady 
solutions has ( a )  one, ( b )  two and (c )  no turning points. The next four sketches show la1 (for 
steady solutions) and the r.1n.s. value of a (for oscillatory solutions) as functions of r when 
(0: > 0. The steady branches in (d ) ,  ( e ) ,  (f) and (9) are similar to those in (a), ( b ) ,  (c) and ( b )  
respectively but their stability properties are altered by the presence of an oscillatory branch. 
Linear stability is indicated by the signs of the real parts of the two important eigenvalues. 
The first sign is that of the small eigenvalue arising from the bifurcation a t  T ( ~ ) ;  the second sign 
corresponds to the important non-zero eigenvalue at rte), which is nogative when 3 < 0 and 
positive when ui > 0 ( r ( e )  > r(O)). The other three eigenvalues have negative real parts and are 
not inclicated. The broken portions of the curves indicate unstable solutions. 
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with r < de) will be called subcritical solutions, while those of type (c) will be called 
supercritical, since r > de) for all a2 > 0. 

As already mentioned, the stability properties of the steady solutions depend 
critically on whether or not the simple bifurcation a t  de)is preceded by a Hopf bifurca- 
tion a t  r ( O ) .  We consider first the simpler case in which convection sets in as a direct 
mode ( w t  < 0). The linear stability of the steady-solution branch is described by a 
quintic dispersion relation for the eigenvalues s. One of the five eigenvalues is always 
negative. At large r there may be a bifurcation ofthe type described by Lorenz (1  963). 
If we ignore this possibility, for reasons discussed by Da Costa et al. (1981), then two 
other eigenvalues have negative real parts. We therefore restrict our attention to  the 
remaining pair, which are real a t  least in the neighbourhood of de) and can change 
sign. When r f )  < 0 the bifurcation a t  r@) is subcritical and the two steady-solution 
branches are unstable in the neighbourhood of r(e) (Poincart5 1885; Jeans 1928). Con- 
versely, when r$? > 0 the supercritical bifurcation is stable. Thus in the former case 
there is a small positive eigenvalue associated with the linear instability of the steady 
branch, while in the latter case there is a small negative eigenvalue. The sign of this 
eigenvalue is determined by the nature of the bifurcation, and its magnitude is small 
because i t  must vanish a t  the bifurcation. The sign of the remaining eigenvalue is the 
same as that of the corresponding eigenvalue associated with the stability of the static 
solution, and its magnitude is typically large. When wf < 0, this latter eigenvalue is 
negative. 

The following discussion relies heavily on the result that in linear stability theory 
the only neutrally stable points are r = r@) and the turning points. At these points an 
eigenvalue s passes singly through zero, so that s must be real in their neighbourhood. 
This result can be proved quite generally (cf .  Da Costa et al. 1981), and is demonstrated 
explicitly in 3 5. With it we are in a position to  describe the stability properties of the 
steady solutions in the case w: < 0. Since the monotonic branch present in type ( c )  is 
stable in the neighbourhood of and since there are no turning points or Hopf 
bifurcations (if the possible Lorenz bifurcation at  large r is excluded) it must be stable 
for all r .  Subcritical steady convection of type (b)  can be produced by reducing the 
value of the parameter [. Since the dependence of the eigenvalues s on [is continuous, 
it follows that the upper steady branch remains stable until one of the eigenvalues can 
pass through zero a t  the left turning point. Moreover, since ( b )  is produced via an 
inflection point, i t  must be the same eigenvalue that changes sign at  the right turning 
point. Hence in ( b )  the small negative eigenvalue near rfe) passes through zero a t  the 
right turning point and remains positive on the portion of the steady-solution branch 
between the two turning points before passing through zero a t  the left turning point. 
Since the real parts of the other four eigenvalues remain negative the only unstable 
part of the branch is that between the two turning points. Now the type ( a )  solution 
may be obtained from type (b )  by increasing w. By continuity in w the upper steady 
branch remains stable, so that the small positive eigenvalue present near de) first 
increases along the subcritical steady branch before decreasing again, and passing 
through zero a t  the turning point. Note that once the stability of the upper steady 
branch is established it becomes clear that a positive eigenvalue must become negative 
a t  the left turning point, rather than a second eigenvalue becoming positive. These 
stability properties are summarized in figures 2(a)-(c),  where 5 signs indicate the 
signs of the two relevant eigenvalues. 
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Finally, we discuss the linear stability of the steady-solution branch in the case 
when overstability precedes the exchange of stabilities ( w i  > 0). Some care must be 
taken in applying the general stability results because now as r is increased through 
de) one eigenvalue of the linear problem becomes negative, while another remains large 
and positive ( 9  3). The behaviour of the eigenvalue that is responsible for the bifurca- 
tion at  +)is therefore opposite to that described above; consequently the small eigen- 
value on the steady branches becomes negative when r!j@ < 0, and positive when 
rp' > 0. (This result is established explicitly in 3 5 . )  The steady-solution branches with 
rg) < 0 are still unstable, but now with a single large positive eigenvalue, while the 
branches with r(2e) > 0 are doubly unstable, with one small and one large positive 
eigenvalue. 

Figures 2 (d-g) show four different types of behaviour for the case when convection 
sets in via a Hopf bifurcation a t  do). For each type the root-mean-square value of a 
(for oscillatory solutions) and la/ (for steady solutions) are sketched as functions of r .  
We shall now discuss the stability of these four types of steady branch. Consider first 
type ( d ) :  here the bifurcation a t  de)is unstable with one large positive eigenvalue that 
passes through zero a t  the turning point, the real parts of the other eigenvalues 
remaining negative in order that  the upper steady branch be stable (see below). There 
is no Hopf bifurcation of the steady branch, and so nothing else can happen. However, 
in type (f) there always has to  be a Hopf bifurcation if the steady branch is to be 
stable a t  large r .  This is because the bifurcation at de) is doubly unstable, with one 
small and one large positive eigenvalue: in the absence of turning points the only way 
that two real unstable eigenvalues can become stable as r is increased is by first 
becoming equal and splitting into a conjugate pair of eigenvalues with positive real 
parts, which subsequently decrease to zero a t  a Hopf bifurcation. If G is now decreased 
so that r ( O )  gets closer to  the bifurcation point moves closer to  fie) until, a t  

= [/[( 1 - c)  q - 61, when do) = de), the bifurcation point disappears and the steady 
branch is stable. Since in this process the other eigenvalues cannot pass through zero, 
or become purely imaginary, it follows that the steady branch is indeed stable beyond 
the Hopf bifurcation. Furthermore, by continuity in the parameters 5 and a i t  follows 
that the upper steady branch in type ( d )  is also stable as was assumed above. 

If there are two turning points on the steady branch the bifurcation a t  de) is again 
doubly unstable, with one large and one small eigenvalue, but now there are two 
possibilities. I n  type ( e )  the small eigenvalue passes through zero a t  the first turning 
point and remains negative thereafter, while the second eigenvalue remains positive 
until the second turning point, where it too passes through zero. In  type (g) ,  on the 
other hand, there is a Hopf bifurcation a t  r = rH ( > r(e)) before the first turning point 
is reached. Between rfI and the first turning point the steady branch is therefore stable 
(cJ type ( b ) )  though i t  is still unstable between the two turning points. At the first 
turning point an eigenvalue passes through zero and remains positive until i t  passes 
through zero once more a t  the second turning point. In  either case, therefore, the part 
of the steady branch between the turning points is unstable, while the upper steady 
branch continues to  be stable. The stability properties for types (d ) - (g )  are all sum- 
marized in figure 2. 

We note that the model (2.17) not only provides solutions that are qualitatively 
similar to those of the full equations (figures 1 a, b ) ,  but also enables us to analyse the 
stability properties of the steady solutions and thereby to gain an understanding of 
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T Y P  Conditions 4 rmtn 

( a )  r$)  < O < O  rl 
( b )  7 $ )  > 0,  q > q1 > 0,  a? > o < O  

(i) q > q 2  rl 
(ii) 4 < qz ? f e )  

q l < o  or a : < O  or O < q < q , , a ~ > O  < O  l f e )  

(4 r4) < 0 > O  rl 
r?) > 0, q > q1 > 0, a: > 0 
No Hopf bifurcation > O  r1 

r 4 )  > 0,  q > q, > 0, a; > 0 

(4 r $ )  > O 

(e) 

(f) r$) > o 

(d 
q l < O  or a2,<O or O < q < q , , n i > O  > O  T H  ( > de))  

> O  
(i) T H  > rl T1 
(ii) r H  < r1 T H  ( > +)) 

TABLE 1. Classification of steady-solution branches. The quantities rk) ,  a?, q1 and q2  are defined 
in the text by equations (3.8) and (5.2)-(5.4); for rl and r H  see $5. Typos (b-ii), (e-ii) and (g-ii) 
are not illustrated in figure 2. 

some of the more perplexing features of the full two-dimensional problem. I n  par- 
ticular i t  provides strong evidence for the conjecture that the stable steady branches 
in figures 1 (a, b )  are in fact connected to de) by an unstable steady branch, and that 
these results correspond to types ( e )  and (f) respectively. 

5. Stability of the steady solutions : detailed considerations 
I n  this section we amplify and justify some of the qualitative statements made in 

$4. We begin by giving a more precise classification of the three types of steady-solution 
branches. 

Froin equation (4.3) it is easy to locate the turning points on the steady-solution 
branches. These satisfy the condition dr /da2 = 0,  and so occur when a2 is a real, 
positive root of the cubic equation 

Since the sum of the roots of (5.1) is negative, there are a t  most' two turning points. 
These coincide and form an inflection point a t  

5 - 2~ - (2  -D),u 

4-m- (7 - 2 ~ ) p  
a2 = a; = p 

when q has the value 
27p( 1 -,u)' ( 3  -a)' 

q1 = [4--a-(7-2w)p]3' 

provided only that q1 > 0 and a: > 0. The type-(c) steady branch then obtains when 
T:) 2 0 andeitheraf < 0, orql < 0,  or 0 < q < qlandu2, > 0. If rf) 0, andq > q1 > 0,  
a: > 0, then the type-@) branch obtains. The first turning point occurs for some 
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r > r(e) (if $1 < 0,  there is only one turning point and i t  is a t  some r < fie), cf. type ( a ) ) .  
Then if 

(5.4) 

the second turning point is a t  r < r(e), while if q < q2 it is a t  r > de) and the steady 
solutions are all supercritical. Let r l  be the value of r ,  a t  the sole turning point for 
types (a )  and ( d ) ,  or a t  the left-hand turning point for types (b ) ,  (e) and (9) .  Then the 
different types of steady solution branches are summarized in table 1 with reference to 
figure 2. We may note that cases (b ) ,  ( e )  and ( 9 )  do not arise in modelling the effects of 
solutes or rotation (Veronis 1965, 1966), where there are no nonlinear t,erms in the 
analogues of ( 2 . 1 7 ~ ) .  

The stability properties of the different types are obtained by linearizing equations 
(2.17) about the steady solutions (4.2) and (4.3), and looking for solut'ions that grow 
like exp sr. The growth rate s is given by the roots of a quintic dispersion relation 

s ~ + A s ~ + B s ~ + C S ~ + D S + E  = 0, 
where 

A = l+w+cr+(5:-W)c, 

B = (a + I )  [ ( 5  -w) c+ a] + ( 5  -a) ~ v + w (  I + p  + 2a2) - (1 - C) + &aV, (5.7) 

c = wr(p  + a2) + cqpa + (a + 1) [w(p  + a2) + (5 -w) cV + I;p.a] 
+a( 1 + a2) [ ( 5  -a) c+ cr] --am( 1 - c - ab) - ( 5  -a) <cry( 1 - c ) ,  (5 .8 )  

D = (w + 1) cr[w(p + a2) + cqp] +w( 1 + a2) [w(p  + a2) + ( 5  -a) cc7 + (Tcq.1 

-w(5--a)ccrr(l -c-ab)-wcrr(l -c) @+a2),  (5.9) 

E = WV( I + a2) [ ~ ( p  + a') + cqp] -W'VT( 1 - c - ab) (p + a2) (5.10) 

9 p =  
and 

(5.1 I )  

Consider first the steady solutions that are marginally stable (s = 0) .  They are 
given by the solutions to the equation E = 0. I n  order to  find the roots of this equation 
we substitute the steady solutions (4.2) into (5.10) and then use (4.3) and (5.11) to 
eliminate r and p in favour of a2. After a fair amount of algebra, the condition E = 0 
reduces to 

(4 -a)y"2(3(3 -w) a2+p}-wa4] 
w(p + .2)2 

a =  , 4 ( 4 - ~ ) 2 a 2 + ~ 1  
(p + a2I2 

uy(u2) = 0, (5.12) 

where the functionf(a2) was defined in (5.1). The solution a2 = 0 corresponds to the 
neutrally stable point r@) already found for the static solution, while the condition 
f ( a 2 )  = 0 defined the turning points where dr/da2 = 0. Hence (5.12) states that, apart 
from de), the turning points are the only marginally stable points on the a2(r) curve, 
as claimed in 94. This result is in fact a general one (cf. Da Costa et al. 1981). 

We next note that, in tthe neighbourhood of de) 

E = 20-g2a(4 -a) rpa2 + o(a4). (5.13) 

Since - E is equal to the product of the eigenvalues of the quintic dispersion relation 
(5 .5 ) ,  we may use this result to say something about the small eigenvalue associated 
with the bifurcation (cf. 94). The bifurcation a t  de)is simple and so only one eigenvalue 
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changes sign, the other four remaining bounded away from zero with values close to 
those given by the two non-zero eigenvalues of (3.1) and those of the decoupled 
equations for c and e. The latter all have negative real parts if wt < 0,  so that the small 
fifth eigenvalue (proportional to a2) must be negative when rk) > 0 or positive when 
r f )  < 0,  in agreement with the general result quoted in $4.  On the other hand, when 
wt > 0 (do) < +)) one of the non-zero eigenvalues a t  r(e) is positive (cf. $ 3)) so that the 
product of the four large eigenvalues is negative. Hence the small eigenvalue arising 
from the proximity to the bifurcation is positive when r t )  > 0,  and negative when 
r f )  < 0,  in agreement with the general result. 

We consider finally the points where 9 s  = 0,  corresponding to  the marginal over- 
stability of the steady solution. Such points satisfy the condition 

( E  - AD)2 = (BE - CD)  (C - AB) ,  (5.14) 

where the coefficients A ,  .. ., E are given by (5.6)-(5. lo), provided that the correspond- 
ing oscillation frequency is real. At such points, where r = r H ,  a branch of oscillatory 
solutions bifurcates from the steady-solution branch (a Hopf bifurcation). As before 
it is convenient to use equation (4.2) to eliminate r ,  and to solve the resulting expression 
for a2. I n  general this cannot be done analytically and has to be done numerically. In  
the case w t  < 0,  we find that (5.14) always has a solution that falls between the two 
turning points (when they exist), or between rmin and rce)whenrF) < 0. However, this 
solution corresponds to the condition that there are two real and opposite eigenvalues 
s, and is not a Hopf bifurcation. On the other hand when r(a2) is monotonically in- 
creasing, there are in general no solutions except for a possible Hopf bifurcation a t  
large values of a2. This bifurcation is always present for sufficiently large values of u 
and is of the same type as that present in the Lorenz (1963) equations, reducing to it in 
the limit q + 0 for fixed 5 , O  < 5 < 1. As discussed by Da Costa et al. ( I98 1 ) the aperiodic 
behaviour found in the neighbourhood of this bifurcation and beyond is not physically 
significant in so far as it is not a feature of the solutions of the full two-dimensional 
problem. This is because i t  occurs a t  such large supercritical Rayleigh numbers that 
more modes would be expected to be excited than are retained in the truncation. 
Therefore we shall not dwell on this property of equations (2.17) any further. 

On the other hand, when w t  > 0 (do) < deb) and r f )  > 0 the steady branch is doubly 
unstable in the neighbourhood of d e ) .  Then if the branch is monotonic a Hopf bifurca- 
tion must always be present if the steady solution is to gain stability a t  larger r (cf. $ 4). 
For smaller 5 the steady branch develops two turning points but u can always be 
decreased sufficiently that do) is close to r@) and the Hopf bifurcation occurs before the 
first turning point is reached. Such a solution, of type ( g ) ,  is similar to  those of type (f)  
in the neighbourhood of de). At the Hopf bifurcation there is a pair of complex eigen- 
values with vanishing real part; the real part becomes negative beyond the bifurcation 
point, while the imaginary parts decrease again and vanish before the first turning 
point is reached. Between this point and the turning point these eigenvalues are real 
and negative; one of them passes through zero at the turning point, and remains 
positive until the second turning point. The portion of the steady branch between the 
bifurcation and the first turning point is therefore stable, while that between the two 
turning points is unstable. If u is now increased, the Hopf bifurcation can either tend 
to  a limiting position below the first turning point (CJ $ 7 ) ,  or i t  can move up the steady 
branch and reach the turning point. The behaviour of the eigenvalues in the former case 
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FIGURE 3. ( a )  The transition from type (8) to type ( e )  as CT is increased. Sketches sllowing tho 
behaviour of the two relevant eigenvalucs, as functions of a,  along the steady branch. Solid liiios 
show real parts of s, broken lines imaginary parts wlierc s is complex. The Hopf bifurcation and 
the first and second turning points are indicated by IZ, 1, 2 respectivoly. ( h )  Difforont types of 
solution in the (u, c)-plane for q = 5 ,  m = 2 .  

U 

is as described above. In the latter case the magnitude of the imaginary eigenvalues 
a t  the Hopf bifurcation decreases as the turning point is approached. When the Hopf 
bifurcation occurs a t  the turning point the imaginary parts of the eigenvalues vanish: 
there are therdore two zero eigenvalues, as can be verified from (5.14). 

For still larger u these two eigenvalues are real and positive just before the turning 
point, and one passes through zero a t  the first turning point, followed by the other a t  
the second turning point. Such a solution is of type ( e ) .  This Isehaviour of the eigen- 
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values as v is increased is illustrated in figure 3 ( a ) .  Figure 3 ( b )  shows the occurrence 
of the various solution types in the (G, <)-plane. The figure is drawn form = 2.0 and 
q = 5.0, but would be qualitatively similar for other values. We note that a type-(g) 
solution exists for all G, and 5 < 0.598 but that  the corresponding region of the 
(g,<)-plane is insignificant unless 0.4 < 5 < 0.598, i.e. the steady branch is not too 
subcritical. As g-tco, type-(g) solutions exist for 0.5 < 6 < 0.598; this situation 
corresponds to the case when the Hopf bifurcation tends to a limit and does not reach 
the first turning point. On the other hand, for 6 < 0.5 the Hopf bifurcation always 
reaches the first turning point as G is increased and a type-(e) solution-results, as 
sketched in figure 3 (a). 

The above results justify the description of the stability of the steady-solution 
branches that was given in $4.  Physically, the most relevant quantity is rmin,  thc 
smallest value of r at which stable steady convection is possible. This is obtained as a 
straightforward consequence of the stability discussion in $4,  and the results for each 
branch type are summarized in table 1.  We note finally that as rf) decreases to zero so 
does the oscillation frequency associated with the Hopf bifurcation, and for rg )  < 0 
the condition (5.14) for a Hopf bifurcation gives instead the points with equal and 
opposite real eigenvalues. This provides the connection between the supercritical 
branch and the subcritical branch discussed earlier in this section. 

6. Time-dependent solutions : subcritical convection 
Except in the neighbourhood of do', finite-amplitude oscillatory solutions cannot 

be followed analytically. To investigate time-dependent behaviour we have therefore 
integrated the equations (2 .17)  numerically, using a standard NAGLIB routine based 
on a fourth-order Runge-Kutta-Merson scheme with variable time steps, chosen to 
ensure sufficient accuracy. These numerical results enable us to study changes in the 
form of the oscillations as r is increased above r(") and to discover how the transition 
from the oscillatory to the steady branch takes place. 

Oscillations exist for some range of r whenever q > yo > 0. Since the steady solu- 
tions do not depend on the Prandtl number g, i t  follows from (3 .6)  that for any 
q > LJ( 1 - <) oscillatory solutions can be obtained, without affecting the basic 
character of the steady solutions, simply by increasing CT to sufficiently large values 
(cf. figure 3b). I n  this section we shall consider only cases where the steady branch 
allows subcritical convection, with rmin < de), as in figures 2 ( d )  or ( e ) ;  the case when 
steady solutions are all supercritical, with rmin > +, as for instance in figure 2 ( f ) ,  
will be discussed in 3 7.  

Table 2 lists the choices of parameters for the various cases that we have investi- 
gated. Figure 4 (a) shows a(r)  on the steady branch for case A ; since the figure is sym- 
metrical about a = 0, only the positive branch is displayed. Oscillatory solutions can 
be represented by the maximum amplitude, amax ,  of a or by its root-mean-square 
value, both of which are plotted in the figure. For this case the oscillatory branch 
bifurcates supercritically from the static solution and oscillatory solutions exist for 
r ( O )  < r < rc E 3.4059 < de). (The exact value of rc is sensitive to the accuracy of the 
numerical procedure. Both Runge-Kutta and predictor-corrector methods yield 
similar results, though rc is marginally higher for the latter. With a cruder difference 
scheme, r, was underestimated by about 2 %,.) 
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Caw Type ‘I m t: U A Q 
A L‘ 2.5 2 0.4 1 1 98.7 
I3 c! 5 2 0.4 1 1 197.3 
C f’ 5 2 0.67 10 1 197.3 
n .f 15 0.8 0.5 1 4 3713 
E L9 5 2 0.598 10 1 197.3 
F Y 5 2 0.4 10 1 197.3 

TABLE 2. Parnmotors for cases treated in this paper. 
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FIGLJRE 4. Subcritical convcction: the steady and oscillatory branches. ( a )  Caso A ,  ( b )  Case B. 
130th umay and the r1n.s. valuc of a are shown on the oscillatory branch; the broken curve 
iridicatcs thc unstable portion of the steady branch. 

For rmin < r < rc both stable oscillatory solutions and stable steady solutions 
coexist, so that hysteresis can occur. The solution that is attained depends on the 
initial conditions. In general the domain of attraction of the oscillatory solution is 
smaller than that of the stable steady solution: a sufficiently large perturbation pro- 
duces a transition from the oscillatory to the stable steady branch. However, if r is 
increased sufficiently gradually the oscillatory branch can be followed all the way to  
rc, where the solution jumps to  the stable steady branch. For r > rc only steady 
solutions can be reached. If r is then decreased through rc the solution remains on the 
upper steady branch until r = rmin, when it drops to the oscillatory branch. 

The oscillations retain the symmetry of equations (2.17), for they are invariant 
under the transformation in which a,  b and d change sign while c and e are unaffected. 
Consrqucntly, if C T ,  b and d vary with a period P then c and e have a period SP. The 
form of the oscillations undergoes a gradual change as r is increased from do) to rc. 
Close to r((’), C T ( T ) ,  b(7)  and d ( 7 )  are small amplitude, nearly sinusoidal oscillations. As 
r is increased, the amplitude grows and the oscillations become more obviously non- 
linear. Figure s ( a )  shows a set of typical solutions, as functions of time, for r = 3.1. 
In this and subsequent figures only the velocity a and the magnetic fluctuations d and 
e are plotted; the temperature, given by b and c, is usually less informative and behaves 
as in the double-diffusive problem discussed by Da Costa et al. (1981). In addition, 
the limit cycle is shown in the (a,  6)-phase plane. The solutions, like relaxation oscilla- 
tions, show rapid rises in amplitude, followed by more gradual falls, though c has the 



Oscillatory and stendy convection in a magnetic Jield 173 

1 (a)  

0 50 7 100 

4 

( b )  
1 

e= 0 50 7 100 

P 

FIGURE 5. Oscillatory solutions for case A with (a )  r = 3.1, ( b )  r = 3.4. For the three profiles 
of 44,  d ( ~ ) ,  e ( 7 ) ,  the positive and negative ordinate axes are of unit length. The limit cycles are 
depicted in tlro ( a ,  (;)-plane, and the asos are of unit length. 

r r 

FIGURE 0. Termination of the oscillatory branch. ( a )  The maximum amplitude amnx and the 
root-mean-square amplitude, togetlier with the unstable steady branoh (broken line) as functions 
of r .  ( b )  The period P of oscillatory solutions plotted against r.  P tends to infinity and the r.m.s. 
value approaclies the steady branch but arlraa changes only slightly. 

opposite behaviour. As expected, the period of e is seen to be half that of a and d.  
If r is increased still further the slow phase of the cycle lasts longer and the waveform 
becomes progressively flatter beyond each maximum. The resulting plateau is apparent 
in the set of solutions for r = 3.4, just short of re, which is shown in figure 5 ( b ) ,  and 
the duration of this plateau increases rapidly as r tends to r,. At the same time, a 
spike develops, corresponding to an initial overshoot, and this produces small lobes 
in the limit cycle of figure 5 ( b ) .  

From figure 4 ( a )  it  appears that the oscillatory branch terminates on the unstable 
steady branch at r = rc. I n  order to establish the nature of this transition we have 
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FIGURE 7. As figur0 5 but for case B with (a)  r = 5.2, ( 6 )  r = 5.255. 

plotted in figure 6 ( a )  an enlargement of the relevant part of figure 4 (a), while figure 
6 ( b )  shows the period of the oscillations as a function of r ,  in the neighbourhood of re. 
The maximum amplitude changes slowly but the period begins to increase rapidly 
and tends to infinity as r approaches rc. In  this limit, the plateau of figure 5 ( b )  extends 
forever, to give a steady solution; the steady solution is, however, unstable and so a 
snaps through to the upper branch. The development of the solutions in the vicinity 
of rc can be represented by phase portraits in the (a,a)-plane, as for the analogous 
problem of thermosolutal convection (see figure 4 of Da Costa et al. 1981). For r < rc 
there is either an unstable focus or an unstable node a t  the origin, surrounded by a 
periodic orbit like the limit cycle in figure 5 ( b ) ;  beyond the symmetrical limit cycle 
lie a pair of saddle points and then a pair of stable nodes (corresponding to the unstable 
and stable steady soIutions respectively). At r = re the two saddle points are linked 
by a heteroclinic limit cycle of infinite period, and beyond rc the limit cycle dis- 
appears. This pattern of behltviour has obvious resemblances to the finite-amplitude 
motion of a simple pendulum; there is, in fact, a limited range of parameters for which 
a(7) is proportional to the Jacobian elliptic function sn (7*), 7* oc T (Knobloch & 
Proctor 1981). 

The amplitudes of the steady and oscillatory branches for case B are displayed in 
figure 4 ( b ) .  This time the oscillations are more vigorous and more strikingly non- 
linear. The solutions for r = 5.2, shown in figure 7 ( a ) ,  are more spiky in appearance 
than those in figure 5 .  As r is increased, the spike becomes more pronounced and is 
followed by a flat shoulder, which develops into a plateau as r -+ re. The limit cycle for 
r = 5.2 has distinctive lobes, which are even more pronounced when r = 5.255. I n  
figure 7 ( b ) ,  a rises to a maximum, then drops down and overshoots the level of the 
shoulder; in the phase diagram this appears as a loop around the neighbourhood of the 
saddle point. Once again, the oscillatory branch terminates on the lower, unstable 
steady branch as the period becomes infinite, at r = rc z 5.2558. Since the maximum 
value of a reflects the height of the spike, amax ends up well above the steady branch, 
as can be seen from figure 4 (b ) .  The r.ni.s. value of a provides a better estimate, which 
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FIGURE 8. Supercritical convection. As figure 4 but (a)  for case C and ( b )  for case D, with a 
point of inflection on the steady branch. 
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FIGURE 9. As figure 5 but for caso C with ( a )  r = 5.6, (5) r = 6.265. 

approaches the steady branch as r+r,. Nevertheless, in figure 4 ( b )  as in figure 6 ( a ) ,  
i t  is only a t  the last moment that the period becomes very large and the r.m.s. value 
swings upwards to join the unstable steady branch. 

7. Time-dependent solutions : supercritical convection 
The form of the steady branch can be altered by varying 5 while q and a are held 

fixed. If q and a retain the values for case B, while 5 is increased, rmin also increases 
until i t  becomes greater than T ( ~ ) .  The two turning points approach each other until 
they eventually coalesce at a point of inflection. From (5.3),  this occurs when 
q1(5)  = q so that 5 N 0.598. For larger values of 5, r increases monotonically with a2 
on the steady branch but r.(") < r(e) for 5 < 0.82. Figure 8 ( a )  shows the steady and 
oscillatory branches for case C. As we saw in 3 4, the steady solution is stable only for 
r > rH > r(e)and there is a Hopf bifurcation at r R  N 6.2414. For de) < I' < rEl the pair 
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FIGURE 10. (a) Trajectory projected onto the (a ,  d)-plane for case C with r = 6.237: the solution 
spirals out from the unstable fixed point to the limit cycle. The axes are of unit length. ( b )  As 
figure 5 but for case D with r = 30. (c) Limit cycle for case D with r = 30, projected onto the 
(a ,  d)-plane. 

of saddle points (which corresponded to the unstable steady solution) is replaced by 
a pair of unstable nodes or foci and the oscillatory branch no longer joins the steady 
branch as the period of the oscillation becomes infinite. The numerical solutions do, 
however, make it possible to describe the connection between the two branches. 

As r is increased from r@), amax increases monotonically and reaches a maximum 
when r N 6.25. Thereafter, amax falls by about 6 yo until, a t  r N 6.270, the oscillatory 
branch disappears and solutions spiral in towards the stable steady branch. The form 
of the oscillatory solutions changes as r is increased and differs from the cases that 
have already been displayed. Figure 9 shows solutions for r = 5.6, which are almost 
symmetrical about the peaks, and for r = 6.265, the highest value for which such 
oscillations could be found. The spikes of figure 7 ( a )  are still present but la1 decreases 
gradually after the peaks and there are no plateaux in d(7). The corresponding limit 
cycle resembles a horizontal figure-of-eight. 

For r slightly greater than rH there are transient oscillations which gradually 
decay; for r slightly less than rH the solutions spiral slowly outward from the unstable 
focus and ultimately develop into large-scale oscillations. Figure I0 ( a )  shows such a 
solution, projected onto the (a ,  d )  phase plane. After spiralling many times around 
the unstable fixed point, the trajectory settles down to a limit cycle, whose shape is 
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characteristic of cases A ,  B and C. The behaviour of solutions in the neighbourhood 
of rH implies that the Hopf bifurcation is subcritical. We conjecture that the (unstable) 
small-amplitude oscillations about the stable steady solution, for r slightly greater 
than rH,  are connected to the large-amplitude oscillations by an unstable oscillatory 
branch, as sketched in figure 2(f) .  This branch links asymmetrical to symmetrical 
trajectories. We have not attempted to compute these unstable oscillatory solutions 
but strong evidence for this conjecture is provided by Knobloch & Proctor (1981). 
They found analytically that there was such an unstable oscillatory branch in the 
limit P ( ~ ) -  r ( O )  < r(e), and showed that the transition between large-amplitude, zero 
mean oscillations and small-amplitude oscillations with non-zero mean occurs via an 
unstable ambiclinic limit cycle of infinite period. Moreover, in the large-amplitude 
oscillations they found that 4 7 )  was proportional to the Jacobian elliptic function 
cn ( T * ) ,  which is consistent with the behaviour in figure 10(b). 

All the cases considered so far correspond to square cells ( A  = 1, m = 2 ) .  When 
h < 1 it follows from (3.8) that  r!f) is large and positive, provided 5 is sufficiently small. 
Thus narrow cells, which are favoured by linear theory, are more likely to have 
solutions of type (f). Case D has h = 4 and a relatively large value of q. As a result, 
rmin is distinctly greater than r(e) (?“*in = TH N 26.7, de) = 16). The character of the 
large-amplitude oscillations, shown in figure 10(b )  for r = 30, differs from that in 
figure 9. The spike in 4 7 )  remains but now it is preceded, and not followed, by a 
shoulder. The corresponding limit cycle in the (a, u)-plane is quite different from that 
in figure 9(b), just as the limit cycle in the (a, d)-plane, shown in figure 10(c), differs 
from that in figure lO(a). This pattern of behaviour is similar to that found for the 
full two-dimensional problem in figure 1 (d) (see also Weiss 1981 c). 

When 6 2: 0.598 there is a point of inflection on the steady branch. This is the crit- 
ical case separating solutions of type ( f )  from those of type (9). For 0.598 < 5 < 0.82, 
there is a Hopf bifurcation on the steady branch as we have just seen; for y 
slightly less than 0.598 there are two turning points, with a Hopf bifurcation below 
the first turning point, and the steady solution is stable between the Hopf bifurcation 
and that turning point, as predicted in $4. However, the connection between the 
large-scale oscillations and the Hopf bifurcation differs from that described above for 
case C. We shall describe this new pattern of behaviour for case E ,  with 5 = 0.598. 

The oscillatory and steady branches for this case are shown in figure 8 ( b ) ;  the Hopf 
bifurcation occurs for r = TH N 6.263 and lies below the inflection point. For r < 6.22 
the oscillatory solutions resemble those displayed in figure 9(b), for case C, and the 
corresponding limit cycle in the (a ,  d)-plane is similar to that eventually attained in 
figure 10(a). When r = 6.23 the solution hovers about the unstable fixed points 
before proceeding on its way and when r = 6.24 the trajectory circles once about each 
fixed point, as shown in figure 11 ( a ) ,  projected on to the (a, d )-plane. The limit cycle 
for r = 6.25 is shown in figure 11 ( b ) :  now the trajectory circles twice about each fixed 
point, as shown in detail in figure 11 (c). As r+rH the limit cycle remains symmetrical 
but the number of spirals about the fixed points increases. Figure 11 (d)  shows a detail 
of the trajectory for r = 6.26, with 8 spirals about the fixed point. Apparently the 
limit cycle approaches the fixed point along its stable manifold and is then thrown 
out on the unstable manifold. For r = 6.263, the numerical solutions still spiral slowly 
outwards but for r = 6.264 they gradually spiral in to a fixed point, so confirming that 
the steady solution is stable for r > rlllLII = rli .  In  case C the oscillatory brmc>h hPcnme 
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( 6 )  

/ 

FIGURE 1 1 .  Limit cycles for case E ,  projected onto tlie (a, d)-plane. Trajectories: ( a )  for r = 6.24 
with onc loop about oach fixed point, ( h )  for r = 6.25, \vltll two loops; ( c )  shows a detail of ( h ) ,  
and ( d )  shows a detail for r = G . 2 G ,  ui th  eight loops. 

unstable while the period was finite; here the oscillatory branch apparently terminates 
on the st.eady branch as the period becomes infinite. As r + r I f  the variables a(7) etc. 
vacillate almost indefinitely about their values for the unstable steady solution. The 
bifurcation at r fI  is probably subcritical but i t  is not a standard Hopf bifurcation. 
The behaviour depicted in figure I 1  is possible because (2 .17)  is a fifth-order system, 
whose solutions necessarily cannot be adequately represented on a two-dimensional 
phase plane. There are indications of similar behaviour in the full two-dimensional 
problem, where some solutions vacillate about a steady state before abruptly reversing 
the direction of motion (Weiss 1981 c) ;  thesc solutions are not, however, periodic. 
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FIGURE 12. As figure 5 but for cwe F with (a) r = 5.20 (symmetrical limit cycle) and (b) r = 5.25 
(asymmetrical limit cycle, with FI single cusp). 
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FIGURE 13. As figure 5 but for case F with (a) r = 5.28 (poiiod doubled) and ( h )  r = 5.33 
(symmetrical limit cycle with two cusps). 

8. Bifurcations from the oscillatory solutions 
The oscillations described in 8 6 were all symmetrical about the static solution, and 

the loops shown in figure 11 developed symmetrically about the two fixed points. 
Numerical solutions for the full two-dimensional problem show that there may also 
be a bifurcation from symmetrical to asymmetrical oscillations (Weiss 1981 a).  More- 
over, in the related problem of thermosolutal convection there is, in certain circum- 
stances, a similar bifurcation, which is followed by a sequence of bifurcations at  each 
of which the period doubles, until the solutions become aperiodic (Da Costa et al. 
1981). Similar patterns of behaviour have been found in other nonlinear systems and 
i t  is nat>ural to expect them here. 
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FIGURE 14. Details of limit cycles in the (a, 6)-plane for case F with (a) r = 5.250 (asymmetrical, 
cf. figure 12b) ,  (b) r = 5.280 (period doubled, cf. figure 13a), (c) T = 5.288 (period quadrupled) 
and ( d )  r = 5.289 (period octupled). 

Such bifurcations do appear in case F ,  which is of type ( e )  and similar to case B. 
The maximum amplitude of the oscillation rises well above the unstable steady 
branch and solutions for r = 5-20 are shown in figure l2 (a) .  These solutions are 
symmetrical and resemble those in figure 9(b).  In  particular, a and d have a period P 
while e has a period frP. The results for r = 5-25, in figure 12 (b ) ,  show that a bifurcation 
has occurred. The limit cycle has a cusp for a > 0, which is not present for a < 0 and 
corresponds to the shoulders that follow maxima in a(7); e ( 7 )  appears irregular and 
its period has increased to  P. There is, of course, another asymmetrical solution 
which can be obtained by transforming a to -a  etc. 

This bifurcation to  asymmetry is followed by further bifurcations a t  which the 
period doubles. In  figure 13 ( a ) ,  for r = 5.28, successive cycles are no longer identical: 
alternate shoulders in a(7) have a subsidiary peak, while every fourth peak in e(7) is 
followed by a flat shoulder. The limit cycle shows that a loop has separated from the 
cusp, as shown in greater detail in figure 14. At r = 5.288, the cusp and loop have each 
split and the period has quadrupled. (The corresponding differences in 4 7 )  are just 
visible t o  the eye of faith.) By r = 5.289, after a further bifurcation, the period has 
octupled: details of the limit cycle are displayed in figure 14. At r = 5.29 the solution 
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seems to be aperiodic. Cusps alternate with loops but successive pairs of cycles differ 
slightly and the solution never repeats itself exactly. These results are consistent 
with the occurrence of a Feigenbaum sequence of bifurcations, in which the incre- 
ments in r between successive bifurcations decrease in a geometric progression, with 
chaotic behaviour beyond the accumulation point (Feigenbaum 1978; Franceschini 
& Tebaldi 1979; Franceschini 1980). The existence of apparently aperiodic solutions 
over a finite range of r suggests that a strange attractor has appeared. 

When r is increased further, the solution remains chaotic for r = 5-30. But for 
r = 5-31 the oscillation is quadruply periodic and for r = 5-315 there is an asymmetrical 
solution resembling that in figure 12(b). So chaos is followed by an inverse sequence 
of bifurcations a t  each of which the period is halved. Thereafter the solutions become 
more symmetrical. The results for r = 5.325 show that there has been a further 
bifurcation: the solutions in figure 13(b) are symmetrical but unlike those in figure 
12 (a )  there are two distinct cusps, which become more pronounced as r is increased. 
When r = 5.333 the cusps have developed into small loops and by r = 5.334 the 
oscillatory branch has lost stability. 

Period-doubling was also found when the equations were solved using a predictor- 
corrector scheme, though the bifurcation points were slightly different. On the other 
hand, no bifurcations were detected with a less accurate Runge-Kutta method. 
Further work is needed to establish the nature of the bifurcations and to  determine 
whether they are relevant to  the full two-dimensional problem. I n  any case, fine 
details (like those in figure 14) would probably be masked by the effects of truncation 
errors and slowly decaying transients in any two-dimensional computation. 

9. Conclusion 
The results that we have presented provide a fairly complete description of the 

principal features exhibited by solutions of the model problem. Steady solutions may 
be either subcritical or supercritical, and their stability is affected by the presence of 
an oscillatory branch. That branch may terminate in various ways: by joining the 
unstable steady branch as the period goes infinite, by connecting to a Hopf bifurcation 
on the supercritical steady branch or, more exotically, by a bifurcation to asymmetrical 
oscillations, followed by a sequence of bifurcations leading to the possible appearance 
of a strange attractor. These features of solutions of equations (2.17) correspond 
closely to  the behaviour of solutions of the full two-dimensional equations (2.5) 
(Weiss 1 9 8 1 ~ )  b, c).  

The full problem, like the model problem, allows subcritical solutions, like that in 
figure l(a), though the magnitude of r@)- rmin is exaggerated in the truncated system. 
With different choices of parameters, as in figure 1 (c,  d ) ,  only supercritical steady 
solutions are obtained, with Hopf bifurcations like those found in cases D and E .  The 
oscillatory solutions are more complicated than those discussed here and also more 
difficult to compute. Typically, the maximum amplitude rises to a maximum and 
then falls off until the oscillatory branch comes to an end. At the same time the 
oscillations become spasmodic, like those in figure 9(b), and their period increases. I n  
certain cases, the oscillations became strongly asymmetrical shortly before they 
disappeared. 

For fixed values of the physical parameters (magnetic field strength and diffusivities) 
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h Rbt 5 = 0.4 5 = 0.2 5 = 0.1 ( = 0.01 5 = 0.001 
5 2.54 x lo6  10 607 6 005 4 208 2871 2 752 
4 1.66 x lo6  11263 5 560 3 466 2 007 1883 
3 9.76 x 105 13937 5 826 3 079 1351 1217 
2 4.88 x 105 23 107 8 083 3 454 943 778 

2.93 x 1 0 5  40 352 12 904 4 858 903 680 
1.96 x 1 0 5  75079 23075 8 123 1167 814 1 

4 2  

TABLE 3. Subcritical and supercritical convection (Q/nz  = 1000). 

the form of the steady branch, both in the full problem and in our truncated system, 
depends critically on the cell width A. For instance, case B, with Q = 200 and h = 1, 
has a subcritical steady branch (cf. figure 3b) but for the same values of Q and 5 a 
narrower cell, with h = $, has a steady branch on which r (a2)  is a monotonically 
increasing function. I n  this example R(", the Rayleigh number a t  the simple bifurca- 
tion, is in any case slightly less for h = 1 than for h = 8 but, for large Q, R(e)is least when 
h 2: (Q/27r2)-* < 1. Thus linear theory favours narrow cells. I n  practice we want to 
find the lowest value of the temperature gradient for which steady convection can 
occur; thus we need t o  calculate Rmin,  the lowest value of R for which steady con- 
vection is possible, and then to find the value of h (which may be of order unity) for 
which R m j n  is least. This can only be done if nonlinear solutions are available. 

To illustrate this, we consider a particular case, with Q/r2 = 1000. Then R(e) is 
least for A 2: 0.37, when R(e) N 1 18 400, and R(e) becomes very large for h of order unity, 
as can be seen from table 3. For the model equations R m i n  can easily be found from 
(4.3) and table 3 gives values of R m i n  for various choices of t; and A. When 5 = 0.4, 
R m i n  is least for h 2: 5 and is then much less than R@); moreover, for h < 0-7 the steady 
branch becomes supercritical and so (for sufficiently large v) R m i n  > R(". AS t; is 
reduced, the value of h for which R m i n  is least becomes smaller but remains of order 
unity. More generally, if Q 9 1, 5 < 1 we can consider two extreme cases. For 
c2 < C2q < a2 < 1 it follows from (4.3) that r 2: 1 and so Rmjn has the same value as the 
critical Rayleigh number in the absence of a magnetic field, which is least when 
h = 4 2 .  For c2q 9 1, Rmin is least when A4 = 452q. I n  the former case, the lowest value 
of R m i n  is 6.75r4, in the latter it is 87r3cQ9, in agreement with the results in table 3. 

Thus steady convection first appears with h of order unity, or greater, and the 
nonlinear results are quite different from the predictions of linear theory. This is a 
feature of solutions to  the full two-dimensional equations also (Weiss 1981 b ) ,  though 
R m i n  is larger than it is for the truncated system. When higher-order terms are in- 
cluded in the representation of the flux function A ,  Busse (1975) has shown that, 
for A = 1, 

R m i n  = 8n4 + g( 17*25&Q)', (9.1) 

provided that @Q < 1 < Q / C 2 ,  and this result is confirmed by numerical experiments 
for @Q 5 100. 

I n  astrophysical applications it is important to be able to estimate the value of the 
superadiabatic temperature gradient a t  which steady convection first occurs, as well 
as the scale of the resulting motion. As we have seen, this can only be done on the 
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basis of nonlinear calculations. The simplified model that we have presented here 
reflects the richness of the full problem and provides a reliable guide to the behaviour 
of its numerical solutions. Moreover, i t  serves as a paradigm for other double-diffusive 
systems. 
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Appendix. Finite-amplitude oscillatory modes 
Modified perturbation theory may be employed to investigate oscillatory solutions 

in the neighbourhood of the Hopf bifurcation at  do). The treatment applies both to  
the full system (2.5) and to the truncated system (2.17).  However, equations (2.17) 
suggest a procedure that is more economical than the methods that have been used 
for related problems (Veronis 1959; Huppert & Moore 1976). Since this procedure can 
also be applied in other contexts, we provide an outline of it here. 

We start by substituting from the expansion (3.9) into the equations (2.17), and 
then equate the coefficients of successive powers of e. To zeroth order in e the equations 
are identically satisfied and in first order we obtain the condition 

iw, + a - d o )  acq 

0 j (;;j = o ,  
(A 1) 

iw,  + c 
together with c1 = el = 0. Lo is reduced to lower-triangular form after multiplication 
by a matrix whose first row is the vector 

M, = ( ( iwo+  l ) ( i w o + c ) ,  d o ) ( i w o + 6 ) ,  - r c q ( i w o + l ) ) ;  

multiplying ( A  1 )  from the left by M,, we then recover the results (3.3) and (3.4). 
We are free to choose a, and normalize b, and d, to i t :  

a, = eiw+, b, = eiwr/(iw,+ I ) ,  d, = eicd7/(iwO+6), (A 2 )  

where only the real parts of the complex expressions have meaning. In  second order 
in c we then obtain 

- iw,a, + arp’b, 
(A 3) 

- iw,  a, 
and, multiplying by M,, we find that r(10) = w1 = 0. We may now set a2 = 0, whence i t  
follows that b, = d, = 0. In order to find c2 and e,  we must evaluate the nonlinear 
terms in (2.17c, e ) .  It is convenient to retain the complex notation, which greatly 
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simplifies the algebra, without explicitly introducing sines and cosines. We therefore 
replace all products zlzz by &,(x, + 2;)) where the star denotes a complex conjugate, 
and so obtain 

aef iur  e2iwr 

c2 = - 2(iw0+1) [I+-] 22w,+a ' e '- - 2(iw0+5) [-+ ( 4 - a ) 5  (4-a)5+2iw0 

The quantities r&O) and w, are now determined by the third-order solvability condition. 
We require that no secular terms be generated by the inhomogeneous terms propor- 
tional to eiw7 in the equation 

(A 5 )  

- iw,a, + ar',")b, + a[q(w - 3) ale, 
- iw, b, + alcz 
- iw,dl + ale2 

We apply the prescription for products, given above, to  the right-hand side of (A 5)) 
retaining only terms proportional to exp f iwr, and, after multiplying the resulting 
vector by M,, we finally obtain a complex expression connecting w, and rp) .  This 
expression is conveniently simplified by using the identities 

to eliminate do) and q in favour of 0,. We find that 

2w,w,(l + ~ + g + i ~ , ) + a r p ) ( i w o + ~ )  

1 [2+ a+2 iw0  
- (g + 5)  ([+ iw,) a( 1 - iw,) - 

4(1- 5)  
W(V+ 1) (1  + b o )  

4(1- 5) 
(w- 2) 5- ( 4 - a ) i ~ O  

(4 -a) 5+ 2iwo 
+ - 

Expressions for u, and rp)  can be obtained by forming real and imaginary parts of 
(A 7 ) .  We are particularly interested in the condition r',") = 0 which defines the 
transition between supercritical and subcritical bifurcation. This condition is given 
by a quadratic equation for w!, obtained by imposing the condition that w2 be real 
when r p )  = 0 :  

4 ~ $ [ 2 (  1 + a) (%+ a) (a3 - 1 1 ~ '  + 1 6 ~  + 16) - ~ ( 4  -a) {(w + 2) ([+ a) 
- (a2 - 6 a +  12) [( 1 + a)}] + ~ t [ ~ ( 4  -w) [{( 1 + a) (4A +w') (a' - 6 a  + 12) 

+ ([+ a) ( 6 a  - <(a3 - 6 a 2  + 4 a  + 28))) + ( 1  + a) ([+ g) {2w2(w3 - 1279 + 18a + 24) 

+ 4 ~ ( 4  -w) (w' - 7 a  + 13) 5 - 2(4 - w ) ~ ( ~ T D ~  - 4m- 16) c2)] 
+ ~ ( 4  -w) [[A{( 1 + a).tir2(~' - 6m+ 12) 

-[2(6+~)(2+~)(4-~)2)-3<(1+g)(<+~)~(4-~)(~2-~-4)] = 0. (A 8 )  

If this equation has no real roots the Hopf bifurcation remains supercritical for all 
values of q. It is easy to confirm that rp)  > 0 when a = 2. For values ofw around 2 the 
bifurcation is always supercritical. However, for suitable choices of a and [, sub- 
critical oscillations can be found for both small enough and large enough values of a 
(0  < w < 4). 
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